TENTATIVE LESSON PLAN (SEMESTERS)

SESSION: 2023-24

Name of the Teacher: Ms. Nisha Pruthi

Subject/Course: Organic Chemistry

Programme: B. Sc-II (Non-Medical & Medical)

Semester: Fourth (4th)

Unit	Name of Topic/Contents	Tentative
		Dates/Days
1.	Infrared (IR) absorption spectroscopy Molecular vibrations, Hooke's law, selection rules, intensity and position of IR bands, Measurement of IR spectrum, fingerprint region, Characteristic absorptions of various functional groups and interpretation of IR spectra of simple organic compounds. Applications of IR spectroscopy in structure elucidation of simple organic compounds Discussion and problems taken	February
2.	AminesStructure and nomenclature of amines, physical properties.Separation of a mixture of primary, secondary and tertiary amines.Structural features affecting basicity of aminesPreparation of alkyl and aryl amines (reduction of nitro compounds, nitriles, reductive amination of aldehydic and ketonic compounds.Gabriel-phthalimide reaction, Hofmann bromamide reaction. Electrophilic aromatic substitution in aryl amines, reactions of amines with nitrous acid.Discussion and problems taken	March
3.	Diazonium Salts Introduction to diazonium Salts & definition, Mechanism of diazotisation, structure of benzene diazonium chloride Replacement of diazo group by H, OH, F, Cl, Br, I, NO2 and CN groups, Reduction of diazonium salts to hydrazine, coupling reaction and its synthetic application Discussion and problems taken Class test	April
4.	Aldehydes and KetonesNomenclature and structure of the carbonyl group, Synthesis of aldehydes and ketones, Advantage of oxidation of alcohols Physical properties, Comparison of reactivities of aldehydes and ketones, Mechanism of nucleophilic additions to carbonyl group Condensation with ammonia and its derivatives, Wittig reaction, Mannich reaction, Oxidation of aldehydes, Baeyer–Villiger oxidation of ketones, Cannizzaro reaction. MPV, Clemmensen, Wolff- Kishner, LiAlH4 and NaBH4 reductions. Assignment Discussion and problems taken Revision of chapters of Organic Chemistry	May

Department: Chemistry

Name of the Teacher: Ms. Pushpa Dhanda

Department: Chemistry

Subject/Course: Physical Chemistry

Programme: B.Sc-II (Non-Medical & Medical)

Semester: Fourth (4th)

Unit	Name of Topic/Contents	Tentative
		Dates/Days
1.	Thermodynamics	February
	Second law of thermodynamics, need for the law, different statements of the law,	
	Carnot's cycles and its efficiency, Carnot's theorem, Thermodynamics scale of	
	temperature. Concept of entropy – entropy as a state function, entropy as a function	
	of V & T, entropy as a function of P & T, entropy change in physical change, entropy	
	as a criteria of spontaneity and equilibrium. Third law of thermodynamics:	
2.	Nernst heat theorem, statement of concept of residual entropy, evaluation of absolute	March
	entropy from heat capacity data. Gibbs function (G) and Helmholtz function (A) as	
	thermodynamic quantities, Gas criteria for thermodynamic equilibrium and	
	spontaneity, its advantage over entropy change. Variation of G with P, V and T.	
3.	Electrochemistry	April
	<i>Electrolytic and Galvanic cells – reversible & irreversible cells, conventional</i>	
	representation of electrochemical cells. Calculation of thermodynamic quantities of	
	<i>cell reaction</i> ($\blacktriangle G$, $\blacktriangle H \& K$).	
	<i>Types of reversible electrodes – metal- metal ion, gas electrode, metal –insoluble</i>	
	salt- anion and redox electrodes. Electrode reactions, Nernst equations, derivation	
	of cell EMF and single electrode potential.	
4.	Standard Hydrogen electrode, reference electrodes, standard electrode potential,	May
	sign conventions, Concentration cells with and without transference, liquid junction	
	potential and its measurement. Applications of EMF measurement in solubility	
	product and potentiometric titrations using glass electrode.	
	Numerical problems	1

Name of the Teacher: Ms. Reetu

Department: Chemistry

Subject/Course: Inorganic Chemistry

Programme: B.Sc-II (Non-Medical & Medical)

Semester: Fourth (4th)

Unit	Name of Topic/Contents	Tentative
		Dates/Days
1.	Chemistry of f-Block elements	February
	Lanthanides: Electronic structure, oxidation states, magnetic properties, complex	
	formation, colour, ionic radii, Lanthanide contraction,	
	Occurrence, separation of lanthanides, Lanthanide compounds	
	Assignment 1 st	
2.	Actinides: General characteristics of actinides	March
	Chemistry of separation of Np, Pu and Am from uranium, Transuranic elements,	
	Comparison of properties of Lanthanides and actinides with transition elements	
	Class test	
3.	Theory of Qualitative and Quantitative Analysis	April
	Chemistry of analysis of various groups of basic and acidic radicals	
	Chemistry of identification of acid radicals in typical combination	
	Chemistry of interference of acid radicals including their removal in the analysis of	
	basic radicals	
	Revision	
	Assignment 2 nd	
4.	Common ion effect, Solubility product, Theory of precipitation,	May
	Co-precipitation, Post precipitation, Purification of precipitates	
	Revision of all Chapters	

Name of the Teacher: Ms. Suman Rani

Subject/Course: Organic Chemistry

Department: Chemistry

Programme: B.Sc-III (Non-Medical & Medical)

Semester: Sixth (6th)

Unit	Name of Topic/Contents	Tentative
		Dates/Days
1.	Heterocyclic compounds	February
	Molecular orbital structure, Aromatic characteristics of pyrrole, furan, thiophene,	
	Aromatic characterstics of thiophene & pyridine, Comparison of aromaticity of	
	benzene, pyrrole, furan and thiophene	
2.	Preparation of pyrrole and electrophilic substitution reaction of pyrrole, Preparation	March
	of furan and electrophilic substitution reation of furan, Preparation of thiophene and	
	electrophilic substitution reaction of thiophene, Molecular orbital structure of	
	Pyridine, Preparation methods of Pyridine	
	Electrophilic substitution reactions of pyridine, Nucleophilic substitution reaction of	
	pyridine	
	Comparison of basicity of pyridine, pyrrole and piperidine, Preparation & reaction	
	of indole, quinoline and isoquinoline, Fischer Indole synthesis and skraup synthesis,	
	Bischler napieralski synthesis, Mechanism of elctrophilic substitution of indole,	
	Quinoline and isoquinoline	
3.	Organic synthesis via enolates, Acidity of hydrogen, alkylation of diethylmalonate	April
	and ethylacetoacetate	
	Synthesis of ethylacetoacetate, claisen condensation, keto-enol tautomerism of ethyl	
	acetoacetate, lkylation of 1-3dithianes, Acylation of enamines	
	Class Test	
	ASSIGNMENT: 1	
	AMINOACIDS, PEPTIDES AND PROTEINS	
	Classification, structure and stereochemistry of aminoacods, Acid base behavior,	
	Isoelectric point, Electrophoresis, Preparation and reaction of aminoacids, Structure	
	and nomenclature of peptides and protein, Peptide structure determination, End	
	group analysis, selective hydrolysis of peptides, Classical peptide synthesis, Solid	
	phase peptide synthesis, Structure of peptides and proteins	
4.	ASSIGNMENT :2	Мау
	Denaturation and renaturation, Nucleic acidintroduction, ribonucleosides ans	
	ribonucleotides, Double helical structure	
	SYNTHETIC POLYMER	
	Addition or chain growth polymerization, Free radical polymerization, Ionic vinyl	
	polymerization, Zieglar natta polymerisation and vinyl polymers, Condensation	
	polymerization, Polysters and polyamides, Phenol formaldehyde resin, Natural and	
	synthetic rubber	
	Revision	

Name of the Teacher: Ms. Savita Rani

Department: Chemistry

Subject/Course: : Inorganic Chemistry

Programme: B.Sc-III(Non-Medical & Medical)

Semester: Sixth (6th)

Unit	Name of Topic/Contents	Tentative
		Dates/Days
5.	Organometallic Chemistry	February
	Definition, nomenclature and classification of organometallic compounds.	
	Preparation, properties, and bounding of alkyls of Li, Al, Hg and Sn, a brief account	
	of metal-ethylenic complexes, mononuclear carbonyls and the nature of bonding in	
	metal carbonyls.	
	Assignment 1 st	
6.	Acids and Bases, HSAB Concept	March
	Arrhenius, Bronsted- Lowry, the Lux- Food, Solvent system and Lewis concepts of	
	acids and bases, relative strength of acids and bases, Concept of Hard and Soft Acids	
	and bases.	
	Test	
7.	Bioinorganic Chemistry	April
	Essential and trace elemens in biological processes, metalloporphyrins with special	-
	reference to haemoglobin and myoglobin. Biological role of alkali and alkaline earth	
	metal ions with special reference to $Ca2+$. Nitrogen fixation.	
	Assignment 2 nd	
8.	Silicones and Phosphazenes	May
	Silicones and phosphazenes as examples of inorganic polymers, nature of bonding in	
	triphosphazenes.	
	Silicones and phosphazenes their preparation, properties, structures and uses.	

Name of the Teacher: Ms. Monika

Subject/Course: Physical Chemistry

Department: Chemistry

Programme: B.Sc-III (Non-Medical) Sec-A

Semester: Sixth (6th)

Unit	Name of Topic/Contents	Tentative Dates/Days
1.	Photochemistry Interaction of radiation with matter, difference between thermal and photochemical processes laws of photochemistry: Grotthus-Drapper Law Stark- Finstein law	<i>February</i>
2.	Jablonski diagram depicting various processes occurring in the excited state, qualitative description of fluorescence, phosphorescence, non radiative process, quantum yield, photosensitized reaction with simple examples Phase equilibriumStatement and meaning of the terms phase, component, degree of freedom, thermodynamic derivation of Gibbs phase rule, phase equillibria of one component system- water systemPhase equillibria of two component system solid liquid equilibria, simple eutectic examples Pb-Ag system, desilverisation of lead Assignment 1st	March
3.	Untroduction to Statistical mechanicsNeed of statistical thermodynamics, thermodynamic probability, Maxwell boltzmandistribution statistics, Born – oppenheimer approximation, partition function and itsphysical significance factorization of partition functionAssignment 2 nd Solution, dilute solution and colligative propertiesIdeal and non ideal solutions, methods of expressing concentration of solutions,dilute solutions, Raoult's law colligative propertues: relative lowering of vapourpressure(ii) elevation in boiling point (iii) depression in freezing point (iv) osmoticpressure.Test	April
4.	Thermodynamic derivation of relation between amount of solute and elevation in boiling point and depression in freezing point. Application in calculating molar masses of normal. Dissociated and associated solutes in solution Revision	May

Name of the Teacher: Ms. Monika

Subject/Course: Chemistry-II

Department: Chemistry

Programme: B.Sc-I (Life Science)

Unit	Name of Topic/Contents	Tentative
		Dates/Days
1.	 Covalent Bond Valence bond theory approach, shapes of simple inorganic molecules and ions based on valence shell electron pair repulsion (VSEPR) theory and hybridization with suitable examples of linear, trigonal planar, square planar, tetrahedral, trigonal bipyramidal and octahedral arrangements. Molecular orbital theory of homonuclear (N₂, O₂) and heteronuclear (CO and NO) diatomic molecules, dipole moment and percentage ionic character in covalent bond. Ionic Solids Ionic structures (NaCl, CsCl, ZnS (Zinc blende), CaF₂) size effects, radius ratio rule and its limitations, Concept of Lattice energy, Born- Haber cycle, Solvation energy and its relationship with solubility of Ionic solids, Polarizing power and Polarisability of ions, Fajan's rule. 	February
2.	Chemical Kinetics Concept of reaction rates, rate equation, factors influencing the rate of reaction, Order and molecularity of a reaction, integrated rate expression for zero, first, Half- life period of a reaction, Arrhenius equation. Distribution Law Nernst distribution law – its thermodynamic derivation, Nernst distribution law after association and dissociation of solute in one of the phases, application of distribution law: (i) Determination of degree of hydrolysis and hydrolysis constant of aniline hydrochloride	March
3.	Alkanes and Cycloalkanes Nomenclature, classification of carbon atoms in alkanes and its structure. Isomerism in alkanes, sources. Methods of formation: Wurtz reaction, Kolbe reaction, Corey- House reaction and decarboxylation of carboxylic acids, physical properties. Mechanism of free radical halogenation of alkanes: reactivity and selectivity. Nomenclature of Cycloalkanes, Baeyer's strain theory and its limitations, theory of strainless rings. Alkenes Nomenclature of alkenes and its structure. Methods of formation: dehydration of alcohols, dehydrohalogenation of alkyl halide, Hofmann elimination and their mechanism. The Saytzeff rule and relative stabilities of alkenes. Chemical reactions: electrophilic and free radical additions, addition of halogens, halogen acids, hydroboration-oxidation, oxymercuration-reduction, ozonolysis and hydration. Markownikoff's rule of addition.	April
4.	Hydrogen Bonding and Van der Waals forcesHydrogen Bonding – Definition, types, effects of hydrogen bonding on properties ofsubstances, applicationBrief discussion of various types of Van der Waals forces.Metallic Bond and semiconductorsMetallic bond – Qualitative idea of valence bond and Band theories of metallic bond(Conductors, Semiconductors, Insulators).Semiconductors – Introduction, types, and applications.Revision	May

Name of the Teacher: Ms. Poonam

Subject/Course: Physical Chemistry

Department: Chemistry

Programme: B.Sc-III (Non-Medical Sec-B) & Medical

Semester: Sixth (6th)

Unit	Name of Topic/Contents	Tentative Dates/Days
1	Photochemistry Interaction of radiation with matter, difference between thermal and photochemical processes, laws of photochemistry: Grotthus-Drapper Law, Stark- Einstein law	February
2	Jablonski diagram depicting various processes occurring in the excited state, qualitative description of fluorescence, phosphorescence, non radiative process, quantum yield, photosensitized reaction with simple examples Phase equilibrium Statement and meaning of the terms phase, component, degree of freedom, thermodynamic derivation of Gibbs phase rule, phase equillibria of one component system- water system Phase equillibria of two component system solid liquid equilibria, simple eutectic examples Pb-Ag system, desilverisation of lead Assignment 1 st	March
3	Introduction to Statistical mechanics Need of statistical thermodynamics, thermodynamic probability, Maxwell boltzman distribution statistics, Born – oppenheimer approximation, partition function and its physical significance factorization of partition function Assignment 2 nd Solution, dilute solution and colligative properties Ideal and non ideal solutions, methods of expressing concentration of solutions, dilute solutions, Raoult's law colligative propertues: relative lowering of vapour pressure(ii) elevation in boiling point (iii) depression in freezing point (iv) osmotic pressure. Test	April
4	Thermodynamic derivation of relation between amount of solute and elevation in boiling point and depression in freezing point. Application in calculating molar masses of normal. Dissociated and associated solutes in solution Revision	May

Name of the Teacher: Ms. Sushma Rani

Subject/Course: Chemistry-II

Department: Chemistry

Programme: B.Sc-I (Physical Science)

Unit	Name of Topic/Contents	Tentative Dates/Days
1	Covalent Bond Valence bond theory approach, shapes of simple inorganic molecules and ions based on valence shell electron pair repulsion (VSEPR) theory and hybridization with suitable examples of linear, trigonal planar, square planar, tetrahedral, trigonal bipyramidal and octahedral arrangements. Molecular orbital theory of homonuclear (N2, O2) and heteronuclear (CO and NO) diatomic molecules, dipole moment and percentage ionic character in covalent bond. Ionic Solids: Ionic structures (NaCl, CsCl, ZnS (Zinc blende), CaF2) size effects, radius ratio rule and its limitations, Concept of Lattice energy, Born- Haber cycle, Solvation energy and its relationship with solubility of Ionic solids, Polarizing power and Polarisability of ions, Fajan's rule.	February
2	Chemical Kinetics Concept of reaction rates, rate equation, factors influencing the rate of reaction, Order and molecularity of a reaction, integrated rate expression for zero, first, Half-life period of a reaction, Arrhenius equation. Distribution Law : Nernst distribution law – its thermodynamic derivation, Nernst distribution law after association and dissociation of solute in one of the phases, application of distribution law: (i) Determination of degree of hydrolysis and hydrolysis constant of aniline hydrochloride	March
3	Alkanes and CycloalkanesNomenclature, classification of carbon atoms in alkanes and its structure.Isomerism in alkanes, sources. Methods of formation: Wurtz reaction,Kolbe reaction, Corey- House reaction and decarboxylation of carboxylicacids, physical properties. Mechanism of free radical halogenation ofalkanes: reactivity and selectivity.Nomenclature of Cycloalkanes, Baeyer's strain theory and its limitations,theory of strainless rings.Alkenes: Nomenclature of alkenes and its structure. Methods of formation:dehydration of alcohols, dehydrohalogenation of alkyl halide, Hofmannelimination and their mechanism. The Saytzeff rule and relative stabilitiesof alkenes. Chemical reactions: electrophilic and free radical additions,addition of halogens, halogen acids, hydroboration-oxidation,oxymercuration-reduction, ozonolysis and hydration. Markownikoff's rule	April
4	 Hydrogen Bonding and Van der Waals forces Hydrogen Bonding – Definition, types, effects of hydrogen bonding on properties of substances, application Brief discussion of various types of Van der Waals forces. Metallic Bond and semiconductors Metallic bond – Qualitative idea of valence bond and Band theories of metallic bond (Conductors, Semiconductors, Insulators). Semiconductors – Introduction, types, and applications. Revision 	May

Name of the Teacher: Ms. Renu

Department: Chemistry

Subject/Course: Introductory Chemistry-II

Programme: MDC

Unit	Name of Topic/Contents	Tentative Dates/Days
1	Renowned Indian Scientists Brief Biography of Renowned Indian Scientists (Hargobind Khurana, Dr. P.C. Ray, Sir C.V. Raman, Dr. A.P.J. Abdul Kalam, C. N. R. Rao, Dr. Vikram Sara Bhai, Dr. Homi Jahangir Bhabha, Dr. J.C. Bose, Dr. S. N. Bose)	February
2	Metal and Non-Metals Periodic table, classification of elements, physical and Chemical aspects of metals and non-metals, Ore and Minerals of Iron, Copper, Aluminium, Alloys Test Assignment	March
3	Physical Properties of Matter Classification of matter, properties, uses, ideal gas equation, Real gas equation, some important compounds (Baking soda, Washing soda, Plaster of paris, Gypsum, Glass)	April
4	Soil and Fertilizers Green revolution, soil types of soil and their components for Fertility, grow condition, pH, irrigation, biofertilizers, Chemical fertilizers and their uses, Acid rain.	May

Name of the Teacher: Ms. Renu

Subject/Course: Minor Chemistry-II

Department: Chemistry

Programme: B.Sc-I (Physical Science & Life Science)

Unit	Name of Topic/Contents	Tentative Dates/Days
1	Gaseous State Kinetic theory of gases, Calculation of root mean square velocity, average velocity, and most probable velocity. Collision diameter, collision number, collision frequency and mean free path (derivations excluded).	February
2	Periodic table and Atomic properties Atomic properties: Atomic and Ionic radii, Ionisation energy, Electron affinity and Electronegativity definition, trend in periodic table, Effective nuclear charge, Slater's rules. Assignment	March
3	Ionic Solids Stoichiometric and Non-stoichiometric defects in crystals, Lattice energy and Born- Haber cycle, Solvation energy and its relationship with solubility of lonic solids. Polarizing power and Polarisability of ions, Fajan's rule. Test Structure and Bonding in Organic Compounds Localized and delocalized chemical bond, Van der Waal's interactions, Resonance: conditions and resonance effect	April
4	Structure and Bonding in Organic Compounds Hyperconjugation, Inductive effect, Electromeric effect & their comparison.	Мау

Name of the Teacher: Mr. Ankit

Department: Chemistry

Subject/Course: Introductory Chemistry-II

Semester: Second (2nd)

Programme: MDC

Unit	Name of Topic/Contents	Tentative Dates/Days
1	Metal and Non-Metals Periodic table, classification of elements, physical and chemical aspects of metals and non-metals, Ore and Minerals of Iron, Copper, Aluminium, Alloys	February
2	Physical Properties of Matter Classification of matter, properties, uses, Ideal gas equation, Real gas equation, Some important compounds (Baking soda, Washing soda, Plaster of Paris, Gypsum, Glass) Assignment	March
3	Mid-Term ExamSoll and FertilizersGreen revolution, Soil: types of soil and their components for fertility, growcondition, pH, Irrigation, Biofertilizers, Chemical fertilizers and their uses,Acid rain.Renowned Indian ScientistsBrief Biography of Renowned Indian Scientists (Hargobind Khurana, Dr.P.C. Ray, Sir C.V. Raman)	April
4	Renowned Indian Scientists Brief Biography of Renowned Indian Scientists (Dr. A.P.J. Abdul Kalam, C. N. R. Rao, Dr. Vikram Sara Bhai, Dr. Homi Jahangir Bhabha, Dr. J.C. Bose, Dr. S. N. Bose)	May