TENTATIVE LESSON PLAN (SEMESTERS)

SESSION: 2023-24

Name of the Teacher:Dr. Poonam

Department: Biotechnology

Subject/Course: PaperIX. Bioinformatics

Programme: B.Sc.BiotechIInd Year

Semester: IV

Unit	Name of Topic/Contents	Tentative
		Dates/Days
1.	History, scope and importance of bioinformatics. Introduction to Genomics – information flow in Biology, DNA sequence data,	February
2.	experimental approach to genome sequence data, genome information resources. Functional Proteomics – protein sequence and structural data, protein information resources and secondary data bases.	March
3.	Computational Genomics - Internet basics, biological data analysis and application, sequence data bases, NCBI model, File format. Sequence alignment and data base search – protein primary sequence analysis, algorithm	April
4.	BLAST, multiple sequence alignment. DATA base searching using BLAST and FASTA.	Мау

Name of the Teacher:Dr. Poonam

Department: Biotechnology

Subject/Course: Biotech Major B23-BTY-201 General Microbiology Programme: B.Sc.Life Sciences Ist Year

Semester: II

Unit	Name of Topic/Contents	Tentative
1.	History and evolution of microbiology with special reference to the contribution of the scientists: A. V. Leeuwenhoek, Louis Pasteur, Robert Koch, Edward Jenner and Alexander Fleming. Introduction to classification of microorganisms: Microbial taxonomy, different criteria including molecular approaches, Microbial phylogeny and current classification of bacteria. Stains and staining procedures: Acidic, basic and neutral stains, Gram staining, Acid fast staining, Flagella staining, Endospore staining. Distribution characterization: Prokaryotic and Eukaryotic and cells, Morphology and cell structure of major groups of microorganisms eg. Bacteria, Algae, Fungi and Protozoa.	Dates/Days February
2.	Cultivation and Maintenance of microorganisms: Nutritional requirements of microorganisms. Methods of isolation, purification, and preservation of microorganisms. Microbial growth: Study of growth curve, generation time, quantitative measurement of growth and factors affecting growth of bacteria. Bacterial Reproduction: Transformation, Transduction and Conjugation. Endospores and sporulation in bacteria.	March
3.	Viruses: General characteristics of viruses, difference between virus and typical microbial cell, structure, different shapes and symmetries with one example of each type, classification of viruses on the basis of nucleic acids, phage and animal cell viruses, example of each and their importance. Brief idea of lytic cycle and lysogeny. Control of microorganisms: By physical and chemical antimicrobial agents including antibiotics and their mode of action.	April
4.	Food and Water Microbiology: Bacterial pollutants of water, coliforms and non coliforms. Sewage composition and its disposal. Microbial spoilage of foods. Major food born infections and intoxications. Microbiology of fermented Foods. Microbial ecology: Microenvironment & Niche. Soil microbiology: Types & functions of microorganisms in soil	May

Subject/Course: Biotech Minor B23-BTY-203 Introduction of Biological Chemistry Programme: B.Sc.Life Sciences Ist Year

Semester: II

Unit	Name of Topic/Contents	Tentative Dates/Days
1.	Basic constituents of matter elements, atoms, isotopes, atomic weights, atomic numbers, basics of mass spectrometry, molecules, Avogadro number, Molarity, Molality, Normality, gas constant, molecular weights, structural and molecular formulae, ions and polyatomic ions.	February
2.	Chemical reactions, reaction stoichiometry, rates of reaction, rate constants, order of reactions, Arrhenious equation, Maxwell Boltzmann distributions, rate- determining steps, catalysis, free-energy, entropy and enthalpy changes during reactions; kinetic versus thermodynamic controls of a reaction, reaction equilibrium (equilibrium constant).	March
3.	Light and matter interactions (optical spectroscopy, 3 fluorescence, bioluminescence); Chemical bonds (ionic, covalent, Van der Walls forces); States of matter vapor pressure, surface tension, boiling and melting points, solubility, capillary action, suspensions, colloids and solutions; Acids, Bases and pH Arrhenious theory, Ionic product of water, weak acids and bases, conjugate acid- base pairs, buffers.	April
4.	Types of organic reactions (Substitution, Addition, Elimination, Rearrangement etc.).Concept of isomerism: Types of isomerism, Optical isomerism, elements of symmetry,molecular chirality, enantiomers, chiral and achiral molecules. Geometricisomerism: Configuration of geometric isomers. Cis-Trans nomenclature. Redoxreactions and electrochemistry-oxidation-reduction reactions.	Мау

Name of the Teacher:Dr. Virender Kumar

Department: Biotechnology

Subject/Course: Paper VIII. Recombinant DNA Technology

Programme: B.Sc Biotech IInd Year

Semester: IV

Unit	Name of Topic/Contents	Tentative Dates/Days
1.	Recombinant DNA Technology and Genetic Engineering: Introduction, history, scope and applications. Tools of Recombinant DNA technology: Steps in gene cloning. Gene cloning tools - Restriction enzymes- class I, II and class III restriction enzymes, their features. Ligases, polymerases, alkaline phosphatases, kinases, 	February
2.	Transformation: Techniques of introducing r-DNA into the desired host, competentcells, electroporation and microinjection. Screening and selection of transformantsand their characterization, selection of clone having the specific DNA insert -immunological screening and colony hybridization. Marker genes- selectable andscorable markers. Gene Libraries: Construction of Genomic and cDNA library,advantages and limitations, screening of gene libraries.DNA amplification through PCR: Basic features and applications of PCR, types andmodifications. Site directed mutagenesis. DNA sequencing techniques: Maxam –Gilbert's method, Sanger's dideoxy chain termination method, Automated DNAsequencing. Genome Mapping: Concept and applications.	March
3.	Restriction enzyme digestion and restriction mapping. Southern and Northern analysis. DNA finger printing. PAGE, Western blotting, dot blots and slot blots. RFLP, RAPD (brief only), microarrays. Gene expression in prokaryotes: expression	April

cassette. Promoters- tissue specific promoters, wound inducible promoters, strong
and regulated promoters. Increasing protein yield-factors affecting level of
recombinant protein production. Production of recombinant proteins in E. coli,
translational and transcriptional fusion- advantages and disadvantages. Applications
of Recombinant DNA technology: Production of recombinant proteins of
pharmaceutical importance- insulin, human growth hormone, recombinant vaccines
(hepatitis B) etc. Transgenic plants and animals.

Name of the Teacher:Dr. Virender Kumar

Department: Biotechnology

Subject/Course: PaperIX. Bioinformatics

Programme: B.Sc Biotech IInd Year

Semester: IV

Unit	Name of Topic/Contents	Tentative Dates/Davs
1.	Structural data bases – Small molecules data bases, protein information resources, protein data bank.	May

Name of the Teacher:Dr. Virender Kumar

Department: Biotechnology

Subject/Course: Paper XIII. Microbial Biotechnology

Programme: B.Sc Biotech IIIrd Year

Semester: VI

Unit	Name of Topic/Contents	Tentative Dates/Days
1.	Microbial Biotechnology: Historical landmarks, General concept. Screening and Isolation of Micro organisms: Industrially important microbes, their screening and isolation, enrichment culture. Strain improvement- bacterial genetics, mutant selection, recombination, recombinant DNA technology. Strain preservation and maintenance. Nutrition and cultivation of microorganisms: Basic nutrition and metabolism, Natural and Synthetic media, Sterilization techniques, Microbial growth kinetics. Fermentation types – Continuous, Batch fed culture, Solid state and Submerged. Quantification of growth, thermodynamics of growth, effect of different factors on growth.	February
2.	Fermentation concepts and types. Microbial Fermenters/Bioreactors: Basic design of fermenters. Physco-chemical standards used in bioreactors (agitation, aeration, ph, temp., dissolved oxygen etc.). Types of fermentersstirred tank, bubble column, airlift etc. Process Development and Downstream Processing: Shake flask fermentation, scale up of the process. Downstream processing – Separation of particles, disintegration of cells, extraction, concentration, purification and drying of the products.	March
3.	Microbial Products: a brief discussion about production of certain industrial products such as – Alcohol, Alcoholic beverage (Beer), Organic acids (citric acid), Antibiotics (penicillin), Amino acids (glutamic acid0, Vitamin (B12), enzymes (protease, alpha-amylase) and a brief account of Steroid Biotransformation. Microbial Foods: Single Cell Proteins. Sewage waste water treatment technique and plants. Biodegradation of xenobiotic compounds.	April
4.	 Microbial polysaccharides and polyesters; production of xanthan gum and polyhydroxyalkanoides (PHA). Bioconversions – Biomining and bioleaching. Biogas production. Microbial technology in agriculture- Bioinsecticides, bioherbicides, biocontrol agents for disease control, advantages over chemical methods. Biofertilizers. Genetically engineered microbes: concept and technique; use of GEM in Agriculture, Industry and Medicine. 	May